Ethanol dual modulatory actions on spontaneous postsynaptic currents in spinal motoneurons.
نویسندگان
چکیده
Recently we have shown that acute ethanol (EtOH) exposure suppresses dorsal root-evoked synaptic potentials in spinal motoneurons. To examine the synaptic mechanisms underlying the reduced excitatory activity, EtOH actions on properties of action potential-independent miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs) were studied in spinal motoneurons of newborn rats. Properties of mEPSCs generated by activation of N-methyl-D-aspartate receptors (NMDARs) and non-NMDA receptors and of mIPSCs mediated by glycine and gamma-aminobutyric acid-A receptors (GlyR and GABA(A)R) were examined during acute exposure to 70 and 200 mM EtOH. In the presence of 70 mM EtOH, the frequency of NMDAR- and non-NMDAR-mediated mEPSCs decreased to 53 +/- 5 and 45 +/- 7% (means +/- SE) of control values, respectively. In contrast, the frequency of GlyR- and GABA(A)R-mediated mIPSCs increased to 138 +/- 15 and 167 +/- 23% of control, respectively. Based on the quantal theory of transmitter release, changes in the frequency of miniature currents are correlated with changes in transmitter release, suggesting that EtOH decreased presynaptic glutamate release and increased the release of both glycine and GABA. EtOH did not change the amplitude or rise and decay times of either mEPSCs or mIPSCs, indicating that the presynaptic changes were not associated with changes in the properties of postsynaptic receptors/channels. Acute exposure to 200 mM EtOH increased mIPSC frequency two- to threefold, significantly higher than the increase induced by 70 mM EtOH. However, the decrease in mEPSC frequency was similar to that observed in 70 mM EtOH. Those findings implied that the regulatory effect of EtOH on glycine and GABA release was dose-dependent. Exposure to the higher EtOH concentration had opposite actions on mEPSC and mIPSC amplitudes: it attenuated the amplitude of NMDAR- and non-NMDAR-mediated mEPSCs to ~80% of control and increased GlyR- and GABA(A)R-mediated mIPSC amplitude by ~20%. EtOH-induced changes in the amplitude of postsynaptic currents were not associated with changes in their basic kinetic properties. Our data suggested that in spinal networks of newborn rats, EtOH was more effective in modulating the release of excitatory and inhibitory neurotransmitters than changing the properties of their receptors/channels.
منابع مشابه
Development of spontaneous synaptic transmission in the rat spinal cord.
Dorsal root afferents form synaptic connections on motoneurons a few days after motoneuron clustering in the rat lumbar spinal cord, but frequent spontaneous synaptic potentials are detected only after birth. To increase our understanding of the mechanisms underlying the differentiation of synaptic transmission, we examined the developmental changes in properties of spontaneous synaptic transmi...
متن کاملExcitatory synaptic transmission between interneurons and motoneurons in chick spinal cord cell cultures.
We have examined the development of synaptic transmission between interneurons and motoneurons in spinal cord cell cultures. Unitary excitatory synaptic currents and complex bursts of excitatory currents develop rapidly: EPSCs (excitatory postsynaptic currents) were detected in 100% of the motoneurons by the 4th day after plating. Inhibitory synaptic currents develop more slowly: IPSCs (inhibit...
متن کاملAdenosine-mediated modulation of ventral horn interneurons and spinal motoneurons in neonatal mice
Neuromodulation allows neural networks to adapt to varying environmental and biomechanical demands. Purinergic signaling is known to be an important modulatory system in many parts of the CNS, including motor control circuitry. We have recently shown that adenosine modulates the output of mammalian spinal locomotor control circuitry (Witts EC, Panetta KM, Miles GB. J Neurophysiol 107: 1925-1934...
متن کاملEffects of Ketamine on Neuronal Spontaneous Excitatory Postsynaptic Currents and Miniature Excitatory Postsynaptic Currents in the Somatosensory Cortex of Rats
Background: Ketamine is a commonly used intravenous anesthetic which produces dissociation anesthesia, analgesia, and amnesia. The mechanism of ketamine-induced synaptic inhibition in high-level cortical areas is still unknown. We aimed to elucidate the effects of different concentrations of ketamine on the glutamatergic synaptic transmission of the neurons in the primary somatosensory cortex b...
متن کاملEffect of interaction between acute administration of morphine and cannabinoid compounds on spontaneous excitatory and inhibitory postsynaptic currents of magnocellular neurons of supraoptic nucleus
Objective(s): Opioids and cannabinoids are two important compounds that have been shown to influence the activity of magnocellular neurons (MCNs) of supraoptic nucleus (SON). The interaction between opioidergic and cannabinoidergic systems in various structures of the brain and spinal cord is now well established, but not in the MCNs of SON. Materials and methods: In this study, whole cell pat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 89 2 شماره
صفحات -
تاریخ انتشار 2003